
EGOI 2021 Day 1, Zürich, Switzerland (online)

Problem A. Zeros
We are interested in computing the number of zeros at the end of the number lcm(a, a+ 1, ..., b), that is,
of the least common multiple of numbers a, a+ 1, ..., b.

Subtask 1

When b ≤ 16, we can explicitly compute the lcm that Santa is interested in. The maximum value that it
can attain is lcm(1, 2, ..., 16) = 16 · 9 · 5 · 7 · 11 · 13 = 720 720.

One way is to use the facts that lcm(x, y, z) = lcm(lcm(x, y), z) and that lcm(x, y) = x·y
gcd(x,y) , where

gcd(x, y) is the greatest common divisor of x and y and can be computed using a built-in library function
(e.g. __gcd in C++) or using the Euclidean algorithm.

Another possibility is to compute the lcm directly from the definition – loop over every positive integer
and check if it is a multiple of all of a, a+ 1, ..., b. (Return the first number that passes this test.)

Once we have computed the lcm, we can find its number of trailing zeros by dividing it by 10 as many
times as possible.

Subtask 2

Here we can still compute the lcm explicitly. However, we must use the first method above, as now the
maximum value is lcm(1, 2, ..., 40) = 5 342 931 457 063 200 ≈ 5 · 1015 and we cannot afford to make this
many iterations. Moreover, we must take care to use a 64-bit integer variable type (such as long long in
C++).

Subtask 3

One solution is to still compute the lcm explicitly – but now the result can have up to 90 digits, so we
need to either implement our own big-number type, or use Python, which has that built in. However,
there is a much more elegant solution, which consists only of several if statements.

We can see that the answer is 0 for b = 1, it can only increase as b grows, and it only increases at powers
of 5, by 1 at a time. Thus we can answer 0 for b ∈ {1, 2, 3, 4}, 1 for b ∈ {5, ..., 24}, 2 for b ∈ {25, ..., 124},
and 3 for b ∈ {125, ..., 200}. But why is that? To see this, let us make some simple observations (which
will be useful also for the following subtasks).

For two positive integers q and x, let us denote by vq(x) the multiplicity of q as a divisor of x, that is,
the maximum k ∈ Z≥0 such that qk divides x. Then we have:

• v10(x) is the number of zeros at the end of x.

• v10(x) = min(v2(x), v5(x)). This is because 10k | x if and only if 2k | x and 5k | x.

• For a prime number p, vp(lcm(x, y)) = max(vp(x), vp(y)). This is because if we decompose both x

and y into prime factors: x = pk11 · ... · pkss and y = p`11 · ... · p`ss , where p1, ..., ps are different primes
and k1, ..., ks, `1, ..., `s ∈ Z≥0, then lcm(x, y) = p

max(k1,`1)
1 · ... · pmax(ks,`s)

s .

• As a consequence,

v10(lcm(a, a+ 1, ..., b)) = min [max(v2(a), v2(a+ 1), ..., v2(b)),max(v5(a), v5(a+ 1), ..., v5(b))] .

For this subtask, the solution follows by noting that when a = 1, then max(v2(1), v2(2), ..., v2(b)) is the
largest k such that 2k ≤ b (in other words, it is blog2 bc). The term corresponding to 5 is the largest k such
that 5k ≤ b, and of course this second k is no larger, as 2k ≤ 5k (equivalently, log5 b ≤ log2 b). This value
of k is 0 for b ∈ {1, ..., 5− 1}, 1 for b ∈ {5, ..., 52 − 1}, 2 for b ∈ {52, ..., 53 − 1}, and 3 for b ∈ {53, ..., 200}
(since 200 < 54).

Subtask 4

Now the input numbers are becoming large (remember to read them as 64-bit integers). However, the
condition b − a ≤ 106 means that we can use the min [max(...),max(...)] formula above explicitly, by

Page 1 of 8

EGOI 2021 Day 1, Zürich, Switzerland (online)

looping over all i = a, ..., b. For each such i we compute v2(i) directly, by dividing i by 2 as many times
as possible; this will take at most log2(1018) steps; and similarly for 5.

Subtask 5

We simply generalize the solution of subtask 3 above: instead of several if statements, we compute
k = blog5 bc by starting from k = 0 and increasing it as long as 5k ≤ b.

Subtask 6

To solve the general task, we will compute the expression max(v2(a), v2(a+1), ..., v2(b)) (and similarly for
5) faster than in O(b− a) time. That is, we want to find the largest k such that 2k divides some number
i ∈ {a, ..., b}. Clearly, this reduces to checking whether a given k is good, as there are only at most
log2(10

18) different k-values to check. To find out whether the interval {a, ..., b} contains some multiple of
2k, we can, for example, round b down to the nearest multiple of 2k, and check if a is still no larger than
the rounded b. More formally, we compute the largest multiple of 2k that is at most b (this is b b

2k
c·2k) and

check whether it is no smaller than a. If yes, then it is a multiple of 2k that lies in the interval {a, ..., b};
otherwise, there is no such multiple.

Page 2 of 8

