
angrycows
EGOI	2021	Day	2	Tasks

English	(ISC)

Angry	Cows

Problem	name Angry	Cows

Input	file standard	input

Output	file standard	output

Time	limit 6	seconds

Memory	limit 256	megabytes

Recent	 years	have	 seen	a	 rapid	 spread	of	 the	Extremely	Green	Oxen	 Illness	 (EGOI),
which	is	a	disease	that	makes	cows	dangerous	to	hikers.	After	several	incidents	it	has
been	decided	that	we	need	to	separate	 the	areas	where	cows	graze	 from	the	part	of
Alps	where	people	want	to	hike.

You	are	given	a	map	of	the	Alps.	On	the	map	there	are	 	areas.	Each	of	them	can	be
either	a	cow-populated	area,	a	hiking	area,	or	an	unused	area.	Some	pairs	of	areas	are
connected	 by	 bidirectional	 trails.	 Each	 trail	 has	 a	 non-negative	 length.	 (In	 graph-
theoretic	terms,	the	map	is	an	undirected	graph	with	weighted	edges.)

You	can	build	walls	 in	some	of	 the	areas.	Once	you	build	a	wall	 in	an	area,	 the	area
becomes	inaccessible	to	hikers	and	cows	--	they	will	no	longer	be	able	to	walk	through
such	an	area.

Your	task	is	to	select	the	set	of	areas	where	walls	will	be	placed.	This	set	of	areas	must
satisfy	the	following	conditions:

It	must	consist	only	of	unused	areas.
It	must	separate	cow-populated	areas	from	hiking	areas.	That	is,	a	cow	should	no
longer	 be	 able	 to	walk	 along	 trails	 from	 a	 cow-populated	 area	 to	 a	 hiking	 area
(without	passing	through	an	area	with	a	wall).
It	must	not	separate	any	hiking	areas	from	each	other.	That	is,	a	hiker	should	still
be	able	to	walk	along	trails	from	any	hiking	area	to	any	other	hiking	area	(without
passing	through	an	area	with	a	wall).

If	 there	 are	 multiple	 ways	 to	 reach	 the	 above	 goal,	 we	 will	 care	 about	 the	 ease	 of
maintenance	of	the	walls.	The	walls	will	be	maintained	by	specialized	crews.	There	is
one	such	crew	based	in	each	hiking	area.

For	 any	 area	 	we	 define	 its	 remoteness	 as	 the	minimum	 length	 of	 a	 path	 of	 trails

between	 	and	some	hiking	area.	(The	length	of	a	path	is	the	sum	of	the	lengths	of	its
trails.	Note	 that	 these	paths	may	pass	 through	walls	and	cow-populated	areas	 --	 the
wall	maintenance	crew	has	all	the	skills	and	equipment	needed	to	do	that.)

The	remoteness	of	a	set	of	areas	is	then	the	maximum	remoteness	of	any	area	in	this
set.

Among	all	sets	of	areas	with	walls	that	have	the	required	properties,	 find	and	return
one	with	the	smallest	possible	remoteness.	If	there	are	many	such	sets	of	areas,	you
may	return	any	one	of	them.

Note	that	the	number	of	areas	does	not	matter.	In	particular,	it	is	not	required	to	use
as	few	walls	as	possible.

Input

The	 first	 line	 of	 the	 input	 contains	 two	 space-separated	 integers	 	 and	 	 (
,)	–	the	number	of	areas	and	trails,	respectively.	The

areas	are	numbered	from	 	to	 .

The	second	line	contains	 	space-separated	integers	 ,	where	 	is	 	if	the	 -th
area	is	cow-populated,	 	if	it	is	unused,	and	 	if	it	is	a	hiking	area.

The	remaining	 	lines	describe	trails.	The	 -th	of	them	contains	three	space-separated
integers	 ,	 	and	 	(,),	denoting	a	trail	between	areas	
and	 	of	length	 .

It	is	guaranteed	that:

between	any	two	areas	there	is	at	most	one	trail,
it	is	currently	possible	to	walk	between	any	two	areas	using	zero	or	more	trails,
there	is	at	least	one	cow-populated	area,
there	is	at	least	one	hiking	area.

Output

If	it	is	impossible	to	build	the	walls	according	to	the	requirements,	output	-1.

Otherwise,	the	first	line	of	the	output	should	contain	an	integer	 	–	the	number	of	walls
you	want	 to	build.	The	second	 line	should	contain	 	 integers	–	 the	numbers	of	areas
where	you	want	to	build	the	walls.	(These	numbers	must	be	distinct	numbers	between	
	and	 ,	inclusive.	They	do	not	have	to	be	in	any	particular	order.)

The	output	will	be	accepted	if	it	is	an	allowed	set	of	walls	with	minimum	remoteness.

Scoring

Subtask	1	(7	points):	 .

Subtask	2	(22	points):	all	lengths	 .

Subtask	3	(16	points):	there	is	exactly	one	hiking	area.

Subtask	 4	 (11	 points):	 there	 are	 exactly	 	 trails	 (in	 graph-theoretic	 terms,	 the
graph	is	a	tree).

Subtask	5	(8	points):	we	have	 	and	all	lengths	 .

Subtask	6	(36	points):	there	are	no	additional	constraints.

Example

standard	input standard	output

10	14
1	0	1	0	0	0	0	0	-1	-1
1	2	1
1	6	1
2	3	1
2	5	2
3	4	1
4	5	1
4	8	2
5	6	1
5	7	1
6	7	2
6	10	1
7	8	1
7	9	1
8	9	1

3
4	5	6

5	5
1	0	0	-1	0
1	2	1000
2	3	1000
3	4	10
4	5	10
1	5	10

2
3	5

4	3
1	0	-1	1
1	2	0
2	3	21
2	4	13

-1

Note

In	 all	 of	 the	 figures,	 blue	 (dotted)	 is	 used	 for	 hiking	 areas,	 brown	 (full)	 for	 cow-
populated	areas	and	orange	(dashed)	for	walls.

In	the	first	example,	the	minimum	possible	remoteness	is	2,	achieved	by	placing	walls
in	areas	 ,	 	and	 .	Note	that	one	cannot	place	walls	in	areas	 ,	 	and	 ,	even	though
this	 would	 yield	 a	 remoteness	 of	 ,	 because	 then	 it	 would	 be	 impossible	 to	 travel
between	the	hiking	areas	 	and	 	without	passing	through	a	wall.

In	the	second	example,	the	remoteness	of	area	2	is	1000,	and	the	remoteness	of	area	3
is	30,	as	it	can	be	reached	via	path	1–5–4–3.	(Recall	that	maintenance	crews	can	pass
through	walls	 and	cow-populated	areas.)	Therefore	we	 should	place	walls	 in	areas	5
and	3	(not	2),	and	the	remoteness	will	be	30.

