
EGOI 2021 Day 1, Zürich, Switzerland (online)

Problem C. Twin Cookies
Subtask 1

You can output what is given in the sample. Alternatively, ask 1, 2 and 3.

Subtask 2

First ask 1 and 2. Let the returned value be x.

Then ask 10 and 20. Let the returned value be y.

Then, ask y− x and y+ x. If y− x is returned, give x and y− x to the first child, and y to the second. If
y + x is returned, give x and y to the first child, and y + x to the second.

Subtask 3

For i ∈ {0, . . . , 49}, first ask 2ni + (1 . . . n), then 2ni + (n + 1 . . . 2n). Let xi be the first value returned,
and yi the second. Define di = yi − xi.

We have 1 ≤ di ≤ 2n − 1. Thus, for n ≤ 25, by the pigeonhole principle, there must exist some pair
i, j ∈ {0, . . . , 49} of distinct indices such that di = dj .

Now, give xi and yj to the first child, and xj , yi to the second.

Subtasks 4-6

The expected solutions to the larger subtasks all employ the same idea, also based on the pigeonhole
principle, at differing levels of optimisation.

If we perform k queries, there are 2k possible subset sums we can create with the k returned values. On
the other hand, as long as all values we ask are at most H, the sum of any subset is at most kH. We can
achieve H = kn by including the first n unused numbers in every query.

Thus, as long as 2k > k2n, we can guarantee that some two subsets have the same sum. Even for n = 5000,
this is achieved for k ≥ 22.

Given any two different subsets S1 and S2 with the same sum, we can now remove S1 ∩ S2 from both.
Removing only elements in both sets keeps the sets distinct and their sums equal, so giving the values in
S1 \ (S1 ∩ S2) to the first child, and values in S2 \ (S1 ∩ S2) to the second is a solution.

It only remains to compute two such subsets S1 and S2.

Subtask 4

For subtask 4, we can maintain for every sum s ≤ 1012 · n up to one subset Ss that achieves that sum.
After one of our queries gives us the value x to work with, we update these subsets. For every sum s, we
see if we can achieve sum s− x. If we can achieve that sum, the subset Ss−x ∪ {x} achieves sum s. If the
sum s was already achievable, we have found a pair of two different subsets of equal sum. Otherwise, we
let Ss ← Ss−x ∪ {x}. Note that we have to make the updates in order of decreasing s, to not create sets
that contain multiple copies of x.

Maintaining the subsets as vectors, we do O(k ·k2n ·k) work. For k ≤ 22 and n ≤ 200, this is fast enough.

Subtask 5

Instead of storing the set Ss for every sum s, we store the value x that let us make the set Ss = Ss−x∪{x}.
To actually construct the set at sum s, we can then iteratively add x to the set, and subtract x from s.

Since we do not have to work with vectors, we trim one factor of k, giving a O(k · k2n) algorithm.

Subtask 6

A fast implementation of the O(k3n) algorithm for subtask 5 can pass even subtask 6. However, faster
solutions exist as well:

We can still trim one factor of k: notice that as long as no sum is achieved by two different subsets,
there are exactly 2t achievable sums after adding t numbers. Thus, if we maintain a sorted vector Ci of
achievable sums at step i, we can compute Ci+1 = Ci

⋃
(Ci + xi) in linear time to |Ci| by merging two

Page 4 of 8

EGOI 2021 Day 1, Zürich, Switzerland (online)

sorted vectors, and thus we can compute all Ci in O(k2n) work total.

Given an achievable sum s at step i, we can easily compute a set corresponding to it: if s−xi ∈ Ci−1, find
the set corresponding to sum s− xi and step i− 1 and add xi to it, otherwise find the set corresponding
to sum s and step i− 1.

Given the first sum s and step i that is achievable in two ways, we can then construct the two distinct
sets of equal sum by constructing s− xi and s at step i− 1, and adding xi to the first.

Alternatively, a O(k3n/ log n) solution could be achieved using bitsets. We maintain bitsets Bi with k2n
bits, with a 1 at position s if the sum s is achievable after adding the first i values xi we receive (so Bi is
a bitset representation of Ci). We have Bi+1 = Bi ‖ Bi « xi, where ‖ is the bitwise OR operation, and «
the right shift operation. Using AND instead of OR lets us check if any sum can be achieved in two ways.
Once we find such a sum and step, we construct the solution as before.

By changing from the first approach to the second after k − log log n steps, we could have complexity
O(k2n log log n/ log n) with the same memory usage, but this is wildly unnecessary for this problem.

Page 5 of 8

