Problem C. Twin Cookies

Subtask 1

You can output what is given in the sample. Alternatively, ask 1, 2 and 3 .

Subtask 2

First ask 1 and 2 . Let the returned value be x.
Then ask 10 and 20. Let the returned value be y.
Then, ask $y-x$ and $y+x$. If $y-x$ is returned, give x and $y-x$ to the first child, and y to the second. If $y+x$ is returned, give x and y to the first child, and $y+x$ to the second.

Subtask 3

For $i \in\{0, \ldots, 49\}$, first ask $2 n i+(1 \ldots n)$, then $2 n i+(n+1 \ldots 2 n)$. Let x_{i} be the first value returned, and y_{i} the second. Define $d_{i}=y_{i}-x_{i}$.
We have $1 \leq d_{i} \leq 2 n-1$. Thus, for $n \leq 25$, by the pigeonhole principle, there must exist some pair $i, j \in\{0, \ldots, 49\}$ of distinct indices such that $d_{i}=d_{j}$.
Now, give x_{i} and y_{j} to the first child, and x_{j}, y_{i} to the second.

Subtasks 4-6

The expected solutions to the larger subtasks all employ the same idea, also based on the pigeonhole principle, at differing levels of optimisation.
If we perform k queries, there are 2^{k} possible subset sums we can create with the k returned values. On the other hand, as long as all values we ask are at most H, the sum of any subset is at most $k H$. We can achieve $H=k n$ by including the first n unused numbers in every query.
Thus, as long as $2^{k}>k^{2} n$, we can guarantee that some two subsets have the same sum. Even for $n=5000$, this is achieved for $k \geq 22$.
Given any two different subsets S_{1} and S_{2} with the same sum, we can now remove $S_{1} \cap S_{2}$ from both. Removing only elements in both sets keeps the sets distinct and their sums equal, so giving the values in $S_{1} \backslash\left(S_{1} \cap S_{2}\right)$ to the first child, and values in $S_{2} \backslash\left(S_{1} \cap S_{2}\right)$ to the second is a solution.
It only remains to compute two such subsets S_{1} and S_{2}.

Subtask 4

For subtask 4 , we can maintain for every sum $s \leq 101^{2} \cdot n$ up to one subset S_{s} that achieves that sum. After one of our queries gives us the value x to work with, we update these subsets. For every sum s, we see if we can achieve sum $s-x$. If we can achieve that sum, the subset $S_{s-x} \cup\{x\}$ achieves sum s. If the sum s was already achievable, we have found a pair of two different subsets of equal sum. Otherwise, we let $S_{s} \leftarrow S_{s-x} \cup\{x\}$. Note that we have to make the updates in order of decreasing s, to not create sets that contain multiple copies of x.
Maintaining the subsets as vectors, we do $\mathcal{O}\left(k \cdot k^{2} n \cdot k\right)$ work. For $k \leq 22$ and $n \leq 200$, this is fast enough.

Subtask 5

Instead of storing the set S_{s} for every sum s, we store the value x that let us make the set $S_{s}=S_{s-x} \cup\{x\}$. To actually construct the set at sum s, we can then iteratively add x to the set, and subtract x from s.

Since we do not have to work with vectors, we trim one factor of k, giving a $\mathcal{O}\left(k \cdot k^{2} n\right)$ algorithm.

Subtask 6

A fast implementation of the $\mathcal{O}\left(k^{3} n\right)$ algorithm for subtask 5 can pass even subtask 6. However, faster solutions exist as well:
We can still trim one factor of k : notice that as long as no sum is achieved by two different subsets, there are exactly 2^{t} achievable sums after adding t numbers. Thus, if we maintain a sorted vector C_{i} of achievable sums at step i, we can compute $C_{i+1}=C_{i} \bigcup\left(C_{i}+x_{i}\right)$ in linear time to $\left|C_{i}\right|$ by merging two
sorted vectors, and thus we can compute all C_{i} in $\mathcal{O}\left(k^{2} n\right)$ work total.
Given an achievable sum s at step i, we can easily compute a set corresponding to it: if $s-x_{i} \in C_{i-1}$, find the set corresponding to sum $s-x_{i}$ and step $i-1$ and add x_{i} to it, otherwise find the set corresponding to sum s and step $i-1$.
Given the first sum s and step i that is achievable in two ways, we can then construct the two distinct sets of equal sum by constructing $s-x_{i}$ and s at step $i-1$, and adding x_{i} to the first.
Alternatively, a $\mathcal{O}\left(k^{3} n / \log n\right)$ solution could be achieved using bitsets. We maintain bitsets B_{i} with $k^{2} n$ bits, with a 1 at position s if the sum s is achievable after adding the first i values x_{i} we receive (so B_{i} is a bitset representation of C_{i}). We have $B_{i+1}=B_{i} \| B_{i}<x_{i}$, where $\|$ is the bitwise OR operation, and « the right shift operation. Using AND instead of OR lets us check if any sum can be achieved in two ways. Once we find such a sum and step, we construct the solution as before.
By changing from the first approach to the second after $k-\log \log n$ steps, we could have complexity $\mathcal{O}\left(k^{2} n \log \log n / \log n\right)$ with the same memory usage, but this is wildly unnecessary for this problem.

