

Problem C. Twin Cookies

Subtask 1

You can output what is given in the sample. Alternatively, ask 1, 2 and 3.

Subtask 2

First ask 1 and 2. Let the returned value be x.

Then ask 10 and 20. Let the returned value be y.

Then, ask y - x and y + x. If y - x is returned, give x and y - x to the first child, and y to the second. If y + x is returned, give x and y to the first child, and y + x to the second.

Subtask 3

For $i \in \{0, \ldots, 49\}$, first ask $2ni + (1 \dots n)$, then $2ni + (n + 1 \dots 2n)$. Let x_i be the first value returned, and y_i the second. Define $d_i = y_i - x_i$.

We have $1 \leq d_i \leq 2n - 1$. Thus, for $n \leq 25$, by the pigeonhole principle, there must exist some pair $i, j \in \{0, \ldots, 49\}$ of distinct indices such that $d_i = d_j$.

Now, give x_i and y_j to the first child, and x_j , y_i to the second.

Subtasks 4-6

The expected solutions to the larger subtasks all employ the same idea, also based on the pigeonhole principle, at differing levels of optimisation.

If we perform k queries, there are 2^k possible subset sums we can create with the k returned values. On the other hand, as long as all values we ask are at most H, the sum of any subset is at most kH. We can achieve H = kn by including the first n unused numbers in every query.

Thus, as long as $2^k > k^2 n$, we can guarantee that some two subsets have the same sum. Even for n = 5000, this is achieved for $k \ge 22$.

Given any two different subsets S_1 and S_2 with the same sum, we can now remove $S_1 \cap S_2$ from both. Removing only elements in both sets keeps the sets distinct and their sums equal, so giving the values in $S_1 \setminus (S_1 \cap S_2)$ to the first child, and values in $S_2 \setminus (S_1 \cap S_2)$ to the second is a solution.

It only remains to compute two such subsets S_1 and S_2 .

Subtask 4

For subtask 4, we can maintain for every sum $s \leq 101^2 \cdot n$ up to one subset S_s that achieves that sum. After one of our queries gives us the value x to work with, we update these subsets. For every sum s, we see if we can achieve sum s - x. If we can achieve that sum, the subset $S_{s-x} \cup \{x\}$ achieves sum s. If the sum s was already achievable, we have found a pair of two different subsets of equal sum. Otherwise, we let $S_s \leftarrow S_{s-x} \cup \{x\}$. Note that we have to make the updates in order of decreasing s, to not create sets that contain multiple copies of x.

Maintaining the subsets as vectors, we do $\mathcal{O}(k \cdot k^2 n \cdot k)$ work. For $k \leq 22$ and $n \leq 200$, this is fast enough.

Subtask 5

Instead of storing the set S_s for every sum s, we store the value x that let us make the set $S_s = S_{s-x} \cup \{x\}$. To actually construct the set at sum s, we can then iteratively add x to the set, and subtract x from s.

Since we do not have to work with vectors, we trim one factor of k, giving a $\mathcal{O}(k \cdot k^2 n)$ algorithm.

Subtask 6

A fast implementation of the $\mathcal{O}(k^3n)$ algorithm for subtask 5 can pass even subtask 6. However, faster solutions exist as well:

We can still trim one factor of k: notice that as long as no sum is achieved by two different subsets, there are exactly 2^t achievable sums after adding t numbers. Thus, if we maintain a sorted vector C_i of achievable sums at step i, we can compute $C_{i+1} = C_i \bigcup (C_i + x_i)$ in linear time to $|C_i|$ by merging two

sorted vectors, and thus we can compute all C_i in $\mathcal{O}(k^2n)$ work total.

Given an achievable sum s at step i, we can easily compute a set corresponding to it: if $s - x_i \in C_{i-1}$, find the set corresponding to sum $s - x_i$ and step i - 1 and add x_i to it, otherwise find the set corresponding to sum s and step i - 1.

Given the first sum s and step i that is achievable in two ways, we can then construct the two distinct sets of equal sum by constructing $s - x_i$ and s at step i - 1, and adding x_i to the first.

Alternatively, a $\mathcal{O}(k^3n/\log n)$ solution could be achieved using bitsets. We maintain bitsets B_i with k^2n bits, with a 1 at position s if the sum s is achievable after adding the first i values x_i we receive (so B_i is a bitset representation of C_i). We have $B_{i+1} = B_i \parallel B_i \ll x_i$, where \parallel is the bitwise OR operation, and \ll the right shift operation. Using AND instead of OR lets us check if any sum can be achieved in two ways. Once we find such a sum and step, we construct the solution as before.

By changing from the first approach to the second after $k - \log \log n$ steps, we could have complexity $\mathcal{O}(k^2 n \log \log n / \log n)$ with the same memory usage, but this is wildly unnecessary for this problem.